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Early-time dynamics of wave fronts in disordered triangular lattices

M. Kelloméki, J. Astram, and J. Timonen
Department of Physics, University of Jpkgla P.O. Box 35, FIN-40351 Jysayla Finland
(Received 7 October 1997

The early-time behavior of transient elastic wave fronts is analyzed in two-dimensional, randomly bond-
diluted triangular lattices composed of Hooke springs. When the bond probgbility the wave-front am-
plitude first oscillates and then begins to decay algebraically. This power-law decay arises from dispersion.
These phenomena should both be observable in, e.g., single cystals of fcc metals. 788, the amplitude
decay is caused by disorder and is exponential with a decay constaft—p)'’. There is a smooth
crossover between these two types of behavi®%063-651X98)50702-1

PACS numbd(s): 46.10+z, 61.43.Bn, 62.30:d, 63.20-¢

Basic features of pulse propagation in various linear anascillates symmetrically between positive and negative val-
nonlinear media have long since been understpbd3]. ues adw| increases. We apply the stationary-phase method
However, there are still many interesting new aspé¢fs], [1,2] in analyzing the time evolution of this pulse. Near the
and novel applications of transient wave frof@3, that are  stationary values of the group velocity; , this method can
now emerging. Recently there has also been interest in dibe used to find the effective bandwidthw of the wave
ordered wave frontg7] and phenomena in highly dispersive group associated withg :
excitable medid8,9]. Most of the work published on classi-
cal waves in random media has dealt with long-time phe-
nomena like localization and anomalous diffusidi0,11]. Aw(X)= v 3Y3 2318 >
We have already showfl2,13 that there are interesting
phenomena related also to the initial phases of a transient
wave front propagating into two-dimensional random net-wherewy, is a dimensionless parameter describing the width
works made of elastic beams or Hooke spritiggcrome-  of the wave group.
chanical models of fibrous compound®Ve found that, in Let us first analyze the time evolution of a longitudinal
addition to the ordinary elastic waves, the leading wave fronpulse of form Eq.(1) in a perfect triangular networkp(
also includes an exponentially decaying transient that propa=1) in the case in which the pulse propagates in[thé]
gates along independent one-dimensional paths made @firection (a similar analysis can easily be done for other
beam segments. A similar transient was also found in dilutedlirections and polarizationsThe dispersion relation of the
square lattices of elastic bearfis4,15. In this paper we network is in this case given by
report results for howdispersionand disorder of discrete
networks contribute to thearly-timedynamics of the lead-
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ing front of elastic waves. Z arcsin—_, |o|< w6

In Fig. 1 we show a bond-diluted triangular lattice with K(w)= ‘/— “’0\/— 3)
bond probabilityp=0.9. Two lattice directions[10] and o »
[11], are marked by arrows in this figure. This disordered \/_ i arcos.. G |w|>wo\6,

network is made of massless Hooke sprifigstice constant
a, spring constanK) and pointlike masseM (on lattice
siteg. We define thewave-front velocity(c.f. definitions in
Refs.[1] and[16]) as the velocity of the first local displace-
ment extremum and itamplitudeas the absolute value of
that extremum.

There are already many result2—14 available for the

wave-front velocity in similar networks. Here we consider \@}'
the early-time behavior of the wave-front amplitude. Initially —

the network is at rest and no forces are present. A pulse is
then induced in the network at=0 of the form

Ao wgt), — m2wsst=72wg

t)= (1)

0, otherwise

where Ag is the initial amplitude andvg the driving fre-

quency. Fourier tra}nSform of the pulsexat O is denoted by FIG. 1. Two-dimensional randomly bond-diluted triangular lat-
d(w,ws), wherew is the frequency of the component wave. tice (p=0.90). The arrows show tH&0] and[11] directions in this
Notice thatg(w,ws) has its global maximum ab=0 and lattice.
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FIG. 2. Initial behavior of simulate¢thin solid ling and calcu-
lated[bold solid line, Eq(4)] wave-front amplitudeA vs distancex FIG. 4. Averaged data for the wave-front amplitudeas a
in a perfect triangular lattice witlK=1.0, M=1.0,a=1.0, and function of distancex obtained from a simulation of 1060 trian-
ws=0.15. Inset shows the asymptotic behavior of the amplitude fogular lattices withp=1.0 (plain solid ling, p=0.997 (boxes, p
wgs=5.0. =0.99 (crosses p=0.97 (triangles, and p=0.95 (circles. For
each value ofp the A(x) curve was averaged over ten network

wherew,: = K/M. The extrema of a wave train move with Samples. Other parameters wéte- M =a=1.0, andws=0.3.

a local phase velocitg(w) = w/k(w). Thus we find, in this

case, that the firdthe fastest maximum must have the fast- behaves ag(w,ws)~Ag/(7ws) within the bandAw, and

est phase velocity related to frequencies nea0. Further-  this leads to an asymptotic power-law dedsfx)o<x 3,

more, =0 is the point of global maximum in the group  For p<1 disorder is introduced in the network. As long

velocity vg(w) =dw/d[k(w)]. This means that the compo- as the wave front, initially started at=0, has not encoun-

nents witho=0 form a stationary wave group. The domi- tered any missing bonds, its amplitude behaves as in the case

nant frequencypoint of global maximum ofg(w,wg)] of  p=1. Once it hits the first defect, it is locallgpartly) re-

the pulse is alsa=0. We can thus conclude that the first flected from the mechanically softer spot formed around a

maximum of the dispersed pulse is the biggest one, and thatissing bond. The wave front loses some of its energy and

it belongs to a stationary wave group which travels with theits component structurghasg is locally distorted. As it hits

highest group velocity g(w=0)=c(w=0)=3/(22)aw, increasingly more defects, its phase coherence is finally de-

=:c. The wave-front amplitudé(x) can now be estimated stroyed, and its behavior changes. Howevep i close to

by a simple sum of the component amplitudgs»,ws) of  unity, the dispersionlike behavior can last quite long. In our

the pulse Eq(1) within the effective bandwidth given by Eq. previous work[14] on the propagation of wave fronts in

(2) aroundw=0: bond-diluted square lattices composed of elastic beams, we
found that, if disorder is increase@ £ 0.95), the wave-front
amplitudeA initially decays asA(x) = Agexp(— ax) with the

Aw(x)/2
A(x)ocJ g(w,05)e” ““dw, (4)  decay constand given by
—Aw(x)/2
where  Aw(X)=(16vy)Yca @  and a(w) a=ay(1-p)?, B=1. (5)
=Im{k(w)}. In the limit x—<, the spectrum of the pulse
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X FIG. 5. Averaged initial wave-front amplitud& (in 10050
latticeg vs distancex for p=0.95 (boxes, p=0.80 (crosseys p
FIG. 3. Simulation data for the wave-front amplitudeas a  =0.70 (triangles, and p=0.60 (circles. For each value op the

function of distancex in a 1000<50 triangular lattice withp A(x) curve was averaged over 25 network samples. Other param-
=0.9999. Other parameters wefe=M =a=1.0, andwg=0.1. eters wereK=M =a=1.0, andwg=0.3.
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~15 ! ! ! ! ! in which dispersion relations similar to the two-dimensional
_20- L case considered here appear. For a single crystal of lead, e.qg.,
25 i one can estimate from E¢) that, in the[100] direction, the
_3.04 | oscillating part of the wave-front amplitude will penetrate to

5 _35] | a depth ofxp=10 mm, provided that the width of the posi-
c tive part of the pulse spectrum is 130 GHz arounO.
—4-07 i In Fig. 3 we show data simulated for the wave-front am-
—4.57 i plitude A(x) in a 1000<50 network withp=0.9999 and
—5.01 i ws=0.1. For small values af the amplitude oscillates just
5335 "7T0 35 30 15 10 o5 like in Fig. 2. Atx=40 the wave front hits the first missing
In(1—p) bond. The amplitude becomes immediately somewhat dis-

turbed. One can observe how this defect, along with the

FIG. 6. Averaged initial decay constamat as a function of other five missing bonds, give rise to local loss of phase
1-p (p=0.6Q . ..,0.95, the other parameters as in Fig. 5 coherence. In Fig. 4 we show the averaged amplifide))
. . . - for five different values op (w5=0.3). It is evident that the
In a triangular spring network considered here, a similar beE)scillatin behavior caused by dispersion changes smoothl
havior could be expected. However, rigidity of a spring net-. atng b y dISpel g noothly
work is a nonlocal propertyvector percolatioyy whereas it into immediate decay caused by_ disorder. '_I'he o_scnlatlng
is a local property(scalar percolationin a beam network. Part of (A(x)) becomes shorter with decreasipguntil all
Therefore, missing bonds soften the spring network on gscillations dlsappear_ The t_early-tlme be_hav|o(,@(x)> for
larger scale. The value af is thus expected to grow as a P=0.60 ...,0.95 is shown in Fig. 5. It is obvious that for
function of 1—p more rapidly than in Eq(5). p=<0.95, the initial decay ofA(x)) is exponential. In Fig. 6

We have tested numerically the analytic results giverfhe initial decay constant is plotted as a function of 1
above. The dynamics of the triangular network was directly— p. It is evident that the power-law form suggested by Eq.
computed using the velocity-Verlédifference method[17].  (5) applies also in this case. The best fit for the exponent
As expected, the first maximum was largest and was relatedave 8=1.7, which differs fromg=1 found for the bond-
to the lowest frequencies. In Fig. 2 we compare simulatedliluted square lattices composed of elastic beams. It can be
(thin solid line and calculatedbold solid line, numerical explained(c.f. above why g>1 for spring networks, but the
integration of Eq.(4) with vy, as a free parameter: best fit actual value ofg is difficult to estimate analytically.
gave vy =2.7) wave-front amplitudeA(x) in the casep In conclusion, we have considered here the amplitude of
=1 (K=1.0,M=1.0,a=1.0, w5=0.15). We notice that, the leading front of elastic waves in bond-diluted triangular
for small x, A(x) oscillates around the initial amplitude of lattices composed of equal springs and masses. We found
the pulse. After the last oscillation, which is also largest, itthat for p=1, the behavior of the wave-front amplitude is
begins to decay monotonically. It is evident from Fig. 2 thatdetermined by dispersion. The driving frequensy of the
the number of oscillations, intervals between them, and theipulse sets the distance of the oscillating part of the wave-
relative amplitudes, are satisfactorily described by &).  front amplitude. After this there is a power-law decay of the
This equation tells how components with the highest fre-amplitude in the casp=1. Asp is lowered below 0.95, the
guencies are left behind the wave front>agncreases. The oscillating part vanishes and the amplitude decays exponen-
amplitudesg(w,ws) of these components are alternatelytially right from the beginning. The decay constant was
negative and positive which leads to the oscillating behaviofound to behave asa~(1—p)!’ (valid when p
of A(x). The inset of Fig. 2 ¢s=5.0) confirms that the =0.6Q...,0.95). The crossover from the dispersion-
asymptotic power-law decay is correctly given by E4). It  dominated p=1) to the disorder-dominateg&0.95) be-
is noteworthy that the driving frequenays sets the distance havior is smooth, and takes place within quite a narrow range
Xp, for a given lattice, after which the wave-front amplitude of missing bond concentration-1p. A more comprehensive
begins the monotonic decay. For small valueswgf, the account of the dispersion, disorder and other mechanisms
value ofxp can be very large. This behavior of the amplitudethat affect the wave-front dynamics in various random dis-
should be observable in, e.g., single monatomic fcc crystalsrete media will be given elsewhef#5].
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