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Early-time dynamics of wave fronts in disordered triangular lattices
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The early-time behavior of transient elastic wave fronts is analyzed in two-dimensional, randomly bond-
diluted triangular lattices composed of Hooke springs. When the bond probabilityp.1, the wave-front am-
plitude first oscillates and then begins to decay algebraically. This power-law decay arises from dispersion.
These phenomena should both be observable in, e.g., single cystals of fcc metals. Forp,0.95, the amplitude
decay is caused by disorder and is exponential with a decay constanta;(12p)1.7. There is a smooth
crossover between these two types of behaviors.@S1063-651X~98!50702-7#

PACS number~s!: 46.10.1z, 61.43.Bn, 62.30.1d, 63.20.2e
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Basic features of pulse propagation in various linear a
nonlinear media have long since been understood@1–3#.
However, there are still many interesting new aspects@4,5#,
and novel applications of transient wave fronts@6#, that are
now emerging. Recently there has also been interest in
ordered wave fronts@7# and phenomena in highly dispersiv
excitable media@8,9#. Most of the work published on class
cal waves in random media has dealt with long-time p
nomena like localization and anomalous diffusion@10,11#.
We have already shown@12,13# that there are interestin
phenomena related also to the initial phases of a trans
wave front propagating into two-dimensional random n
works made of elastic beams or Hooke springs~microme-
chanical models of fibrous compounds!. We found that, in
addition to the ordinary elastic waves, the leading wave fr
also includes an exponentially decaying transient that pro
gates along independent one-dimensional paths mad
beam segments. A similar transient was also found in dilu
square lattices of elastic beams@14,15#. In this paper we
report results for howdispersionand disorder of discrete
networks contribute to theearly-timedynamics of the lead-
ing front of elastic waves.

In Fig. 1 we show a bond-diluted triangular lattice wi
bond probability p50.9. Two lattice directions,@10# and
@11#, are marked by arrows in this figure. This disorder
network is made of massless Hooke springs~lattice constant
a, spring constantK) and pointlike massesM ~on lattice
sites!. We define thewave-front velocity~c.f. definitions in
Refs.@1# and@16#! as the velocity of the first local displace
ment extremum and itsamplitudeas the absolute value o
that extremum.

There are already many results@12–14# available for the
wave-front velocity in similar networks. Here we consid
the early-time behavior of the wave-front amplitude. Initia
the network is at rest and no forces are present. A puls
then induced in the network atx50 of the form

f ~ t !5H AScos~vSt !, 2p/2vS<t<p/2vS

0, otherwise
~1!

where AS is the initial amplitude andvS the driving fre-
quency. Fourier transform of the pulse atx50 is denoted by
g(v,vS), wherev is the frequency of the component wav
Notice thatg(v,vS) has its global maximum atv50 and
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oscillates symmetrically between positive and negative v
ues asuvu increases. We apply the stationary-phase met
@1,2# in analyzing the time evolution of this pulse. Near th
stationary values of the group velocityvG , this method can
be used to find the effective bandwidthDv of the wave
group associated withvG :

Dv~x!5nM
1/331/3vG

2/3x21/3Ud2vG

dv2 U21/3

, ~2!

wherenM is a dimensionless parameter describing the wi
of the wave group.

Let us first analyze the time evolution of a longitudin
pulse of form Eq.~1! in a perfect triangular network (p
51) in the case in which the pulse propagates in the@11#
direction ~a similar analysis can easily be done for oth
directions and polarizations!. The dispersion relation of the
network is in this case given by

k~v!55
4

aA3
arcsin

v

v0A6
, uvu<v0A6

2p

aA3
2 i

4

aA3
arcosh

v

v0A6
, uvu.v0A6 ,

~3!

FIG. 1. Two-dimensional randomly bond-diluted triangular la
tice (p50.90). The arrows show the@10# and@11# directions in this
lattice.
R1255 © 1998 The American Physical Society
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wherev0 :5AK/M . The extrema of a wave train move wit
a local phase velocityc(v)5v/k(v). Thus we find, in this
case, that the first~the fastest! maximum must have the fas
est phase velocity related to frequencies nearv50. Further-
more, v50 is the point of global maximum in the grou
velocity vG(v)5dv/d@k(v)#. This means that the compo
nents withv.0 form a stationary wave group. The dom
nant frequency@point of global maximum ofg(v,vS)] of
the pulse is alsov50. We can thus conclude that the fir
maximum of the dispersed pulse is the biggest one, and
it belongs to a stationary wave group which travels with
highest group velocityvG(v50)5c(v50)53/(2A2)av0
5:c. The wave-front amplitudeA(x) can now be estimated
by a simple sum of the component amplitudesg(v,vS) of
the pulse Eq.~1! within the effective bandwidth given by Eq
~2! aroundv50:

A~x!}E
2Dv~x!/2

Dv~x!/2
g~v,vS!e2a~v!xdv , ~4!

where Dv(x)5(16nM)1/3ca22/3x21/3 and a(v)
5Im$k(v)%. In the limit x→`, the spectrum of the puls

FIG. 2. Initial behavior of simulated~thin solid line! and calcu-
lated@bold solid line, Eq.~4!# wave-front amplitudeA vs distancex
in a perfect triangular lattice withK51.0, M51.0, a51.0, and
vS50.15. Inset shows the asymptotic behavior of the amplitude
vS55.0.

FIG. 3. Simulation data for the wave-front amplitudeA as a
function of distancex in a 1000350 triangular lattice withp
50.9999. Other parameters wereK5M5a51.0, andvS50.1.
at
e

behaves asg(v,vS)'AS /(pvS) within the bandDv, and
this leads to an asymptotic power-law decayA(x)}x21/3.

For p,1 disorder is introduced in the network. As lon
as the wave front, initially started atx50, has not encoun-
tered any missing bonds, its amplitude behaves as in the
p51. Once it hits the first defect, it is locally~partly! re-
flected from the mechanically softer spot formed around
missing bond. The wave front loses some of its energy
its component structure~phase! is locally distorted. As it hits
increasingly more defects, its phase coherence is finally
stroyed, and its behavior changes. However, ifp is close to
unity, the dispersionlike behavior can last quite long. In o
previous work@14# on the propagation of wave fronts i
bond-diluted square lattices composed of elastic beams
found that, if disorder is increased (p,0.95), the wave-front
amplitudeA initially decays asA(x)5A0exp(2ax) with the
decay constanta given by

a5a0~12p!b, b51 . ~5!

r

FIG. 4. Averaged data for the wave-front amplitudeA as a
function of distancex obtained from a simulation of 100350 trian-
gular lattices withp51.0 ~plain solid line!, p50.997 ~boxes!, p
50.99 ~crosses!, p50.97 ~triangles!, and p50.95 ~circles!. For
each value ofp the A(x) curve was averaged over ten netwo
samples. Other parameters wereK5M5a51.0, andvS50.3.

FIG. 5. Averaged initial wave-front amplitudeA ~in 100350
lattices! vs distancex for p50.95 ~boxes!, p50.80 ~crosses!, p
50.70 ~triangles!, and p50.60 ~circles!. For each value ofp the
A(x) curve was averaged over 25 network samples. Other par
eters wereK5M5a51.0, andvS50.3.
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In a triangular spring network considered here, a similar
havior could be expected. However, rigidity of a spring n
work is a nonlocal property~vector percolation!, whereas it
is a local property~scalar percolation! in a beam network.
Therefore, missing bonds soften the spring network o
larger scale. The value ofa is thus expected to grow as
function of 12p more rapidly than in Eq.~5!.

We have tested numerically the analytic results giv
above. The dynamics of the triangular network was direc
computed using the velocity-Verlet~difference! method@17#.
As expected, the first maximum was largest and was rela
to the lowest frequencies. In Fig. 2 we compare simula
~thin solid line! and calculated~bold solid line, numerical
integration of Eq.~4! with nM as a free parameter: best
gave nM.2.7) wave-front amplitudeA(x) in the casep
51 (K51.0, M51.0, a51.0, vS50.15). We notice that,
for small x, A(x) oscillates around the initial amplitude o
the pulse. After the last oscillation, which is also largest
begins to decay monotonically. It is evident from Fig. 2 th
the number of oscillations, intervals between them, and t
relative amplitudes, are satisfactorily described by Eq.~4!.
This equation tells how components with the highest f
quencies are left behind the wave front asx increases. The
amplitudesg(v,vS) of these components are alternate
negative and positive which leads to the oscillating behav
of A(x). The inset of Fig. 2 (vS55.0) confirms that the
asymptotic power-law decay is correctly given by Eq.~4!. It
is noteworthy that the driving frequencyvS sets the distance
xD , for a given lattice, after which the wave-front amplitud
begins the monotonic decay. For small values ofvS , the
value ofxD can be very large. This behavior of the amplitu
should be observable in, e.g., single monatomic fcc crys

FIG. 6. Averaged initial decay constanta as a function of
12p (p50.60, . . . ,0.95, the other parameters as in Fig. 5!.
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in which dispersion relations similar to the two-dimension
case considered here appear. For a single crystal of lead,
one can estimate from Eq.~2! that, in the@100# direction, the
oscillating part of the wave-front amplitude will penetrate
a depth ofxD510 mm, provided that the width of the pos
tive part of the pulse spectrum is 130 GHz aroundv50.

In Fig. 3 we show data simulated for the wave-front a
plitude A(x) in a 1000350 network with p50.9999 and
vS50.1. For small values ofx the amplitude oscillates jus
like in Fig. 2. At x.40 the wave front hits the first missin
bond. The amplitude becomes immediately somewhat
turbed. One can observe how this defect, along with
other five missing bonds, give rise to local loss of pha
coherence. In Fig. 4 we show the averaged amplitude^A(x)&
for five different values ofp (vS50.3). It is evident that the
oscillating behavior caused by dispersion changes smoo
into immediate decay caused by disorder. The oscillat
part of ^A(x)& becomes shorter with decreasingp until all
oscillations disappear. The early-time behavior of^A(x)& for
p50.60, . . . ,0.95 is shown in Fig. 5. It is obvious that fo
p<0.95, the initial decay of̂A(x)& is exponential. In Fig. 6
the initial decay constanta is plotted as a function of 1
2p. It is evident that the power-law form suggested by E
~5! applies also in this case. The best fit for the expon
gaveb51.7, which differs fromb51 found for the bond-
diluted square lattices composed of elastic beams. It can
explained~c.f. above! why b.1 for spring networks, but the
actual value ofb is difficult to estimate analytically.

In conclusion, we have considered here the amplitude
the leading front of elastic waves in bond-diluted triangu
lattices composed of equal springs and masses. We fo
that for p.1, the behavior of the wave-front amplitude
determined by dispersion. The driving frequencyvS of the
pulse sets the distance of the oscillating part of the wa
front amplitude. After this there is a power-law decay of t
amplitude in the casep51. As p is lowered below 0.95, the
oscillating part vanishes and the amplitude decays expon
tially right from the beginning. The decay constant w
found to behave as a;(12p)1.7 ~valid when p
50.60, . . . ,0.95). The crossover from the dispersio
dominated (p.1) to the disorder-dominated (p<0.95) be-
havior is smooth, and takes place within quite a narrow ra
of missing bond concentration 12p. A more comprehensive
account of the dispersion, disorder and other mechani
that affect the wave-front dynamics in various random d
crete media will be given elsewhere@15#.
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